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Noise-assisted classical adiabatic pumping in a symmetric periodic potential
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We consider a classical overdamped Brownian particle movingsynametricperiodic potential. We show
that a net particle flow can be produced by adiabatically changing two external periodic potentials with a phase
differenceg in time andy in space. The classical pumped current is found to be independent of the friction and
to vanish both in the limit of low and high temperature. Below a critical temperature, adiabatic pumping
appears to be more efficient than transport due to a constant external force.
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I. INTRODUCTION maximal at some intermediate temperature, and vanishes in
the high-temperature limit.

Recently there has been considerable interest in small- A symmetry breaking of the system is necessary to gen-
amplitude adiabatic pumping in mesoscopic electrical conerate a directed current. In the noise-assisted parametric
ductors[1]. Two oscillating out-of-phase perturbations are PUMping process discussed here the symmetry is broken not
applied, which lead to small distortions of the shape of thewith the help of the static potentiafy(x) but through the
system. As a consequence a directed current is gend@jted Perturbations applied to the system. Nonequilibrium state-
The pumped current is a consequence of quantum interfeAependent noise with the same perlod as .the potential but out
ence effects. An elegant formulation of the problem has beeRf Phase with a symmetric static potential also leads to a
achieved by Brouwef3] based on the modulation of the directed currenfl12—-16. Thus this is an example of directed

emissivities of the systerp4]. Inelastic scattering does not motion in a symmetric potential for which the symmetry is

suppress the pumped current but introduces an additiongerken not bY the static potential .bUt only by the F‘O”e_q“"'b'
. L rium noise. Similarly directed motion can be obtained in sys-
more classical contribution to the pumped current due t

e . . Nt CUE Wems with a spatially symmetric potential but with a friction
rectification[5,6]. For a broader view of this very active field constant that is state dependéh?,18. We emphasize the
we refer to a few recent worg—11].

: . S . symmetry of the static problem, since typically, the recent
Adiabatic pumping is of general interest due to the factjieratyre has emphasized directed transport in systems in

Fhat only very slow perturbations are requlrec_i: furtherm_orewhich already the static potentidl9—21 is asymmetric

if the amplitudes are small t_he ;ystem remains at all tlmgs/o(x);évo(_x)_ The examples discussed here and in Refs.

close to the stationary equilibrium state. Thus parametri¢12_16 demonstrate that static symmetric breaking, i.e., the

adiabatic pumping can be viewed as a tool to investigate thgonsideration of aatchetpotential[22—26 is not necessary,

near equilibrium properties of a system. Since perturbationg either nonequilibrium noise or perturbations applied to the

can be applied locally, such an investigation gives informasystem act in a symmetry breaking way.

tion on the system that cannot be obtained through the appli- Quasiadiabatic perturbations of particles subject to the

cation of global and stationary forces. Smoluchowski equation have recently been investigated by
It is the purpose of this work to complement the quantumParrondo[27]. Below we present a discussion of small-

mechanical discussions mentioned above and to investigatmplitude parametric pumping that closely follows the dis-

parametric pumping for a purely classical system. We concussion by Parrond®7].

sider particles subject to damping and thermal noise in a

symmetric periodic potentidly(x) =Vq(—X). In addition to Il. PARAMETRIC PUMPING

the static potential Vo(x) two small-amplitude time- , ) .

dependent oscillatory potentials act on the particles. The per- 1h€ overdamped motion of a classical particle in an ex-

turbations we consider are periodic in time and are periodid€"n@l potential and subjected to thermal noise is governed by

in space with the same period as the static potential. W&1® Smoluchowski equation for the probability density

investigate the case where the perturbations hadeuble p(x,1),
phase difference both itime and space As in the quantum

case, a directed current is generated, which is proportional to 9 (x.t) = 9 [ VX T(D) L1 (1)

the frequency of the oscillating perturbations and propor- gt P T Rk IX B ox P

tional to the product of their amplitudes. A directed current

results for almost all types of perturbations, unless these per- __ iJ(x Hp(x,t) 1)
turbations have a special symmetpghase differences equal ax Y

to a multiple of 7). Interestingly, for the small-amplitude ) - _
perturbations considered here, the thermal noise is essentidfhere x is the mobility, 8 the inverse temperature, and
the pumped current vanishes in the zero-temperature limit, i8(x,t) = — uV' (X, T(t))— ukTdldx is the current operator.
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Here the prime denotes derivative with respect.td/e con-  rection to this solution to determine the current. We expect
sider a total potentia¥(x, T(t)) that is written as a sum of a that the correction to the adiabatic solution is of the order of

symmetric periodic potential the variation rate of the perturbatid27], which, for the
potential AV(x,T(t)) we consider here, is given hy. We
Vo(x)=Vo[1-cog2mx/a)] (2)  thus seek a solution of the Smoluchowski equation of the
with perioda, plus a perturbation form
AV, T(1)= X100 T1() + Xo(X) To(1). 3) p(X,t)=pg (X,) + T() »(X,T(1)). 8

Here X;(x) and X,(x) are arbitrary spatial functions with The correctionT(t) »(x,T(t)), of order w, to the adiabatic
perioda and similarlyT,(t) andT,(t) are arbitrary functions  solution p, (x,t) gives rise to the nonvanishing particle cur-
of time with period 27/w. We consider two special ex- rent. Inserting the ansat8) into the Smoluchowski equation
amples with purely harmonic driving. In both examples the(1) and neglecting the time derivative of the correction,
time-dependent external perturbation is composed of tw@yhich is of the ordew?, we arrive at

sinusoidal potentials with amplitudé, andVg. In the first

example, the spatial functions act over the entire period, J

NE,T) 1 49
p— | ———+
X

X g ax| O T)= Ve (k). ()

AV(x,T(t))= — Vcog 2mx/a)cog wt)
—Vgcog2mx/a+ y)codwt+¢) (4)  This second-order partial differential equation fefix, T(t))
has to be solved with periodic boundary conditions
with a phase differencg in space and a phase differenge (0,7 (t))=»(a,T(t)), and the condition that the integral of
in time. In the second example, driving is spatially Iocallzed;(x,-r-(t)) along the interval[0,a] vanishes. This second

at two arbitrary pointx; andx; in the interval[0.a], condition follows from the normalization gf(x,t) over one

’ ia) period. We fi
AV, T(1)= — Vacod o) 8(x,— 2mx/a) (spatia period. We find

—Vgcogwt+ ¢)8(x,—2mx/a), (5) ;(X'f(t)):élefﬁv(x,f(t))fxdyeﬁv(y,f(t))
0

whered is the Diracé function. In the following we assume

> - X -
that AV(x,T(t)) changes slowly in time and that its ampli- +Eef,8V(x,T(t))f dyefVo.Tm)
tude is small compared to the unperturbed potentjalVy % 0
<V,.

The quantity of prime interest is the mean particle current, X fydzﬁf(t)pg(z,t) +C,e AVKT),

averaged over one period of space and one period of time, 0

(10

w a 27w
<I>=—J dxf dtI(x,t)p(x,t) . R ) )
2malo 0 whereC,(t) and C,(t) are two vectors of integration con-

stants. Explicitly,él(t) is given by
B

N a X R _
Ci(t)=— ;fo dxpg (X,t) fo dyVigpo (y,1), (11)

_ Mmoo [a 27w , R
22 ["ax| T av e, ©

Due to the periodicity of the potential in time and space, the
second term of(x,t) does not contribute to the current. We
begin by solving the Smoluchowski equati@t) in the limit

of small driving frequencie®— 0. In this limit, the system
remains close to the adiabatic solutipg (x,t), which is
obtained by setting in Eq1) dp/dt=0. The latter is given
by an equilibrium Boltzmann distribution

where p, (x,t) is given by Eq.(7). The solution(8) of the
Smoluchowski equation is then obtained by combining Egs.
(7) and(10). Using the above solution, the mean currés)t
can be easily calculated as

M@ 2l -, .
s (=22 (e T (V==%.5), O
py (x,1)=27(t)e AV&TO),

o (Tere) (2 LN
o) dT| dxeg(xt) | dyViges (v.0).

a -
Z. ()= fo dxe" AV T) (7) 7(0)

(12)
and therefore does not yield any currefiiiere we have in R
addition to the adiabatic solutiorp, (x,t) introduced We now take the case AV(X,T(t))=Ty(t)X1(X)

po (x,t) for later referencd.Since the adiabatic solution is -+ T,(t)X,(x). With ﬁf(t)=a/aTl+ dldT, and Green'’s theo-
not associated with a current flow, we need to find the correm, Eq.(12) can be rewritten as
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® a (x [dpg(xt) dpg (y,t) "
= (w)
{ ZWJAdTldefo dXJody( Ty aT, 0.

~ dpg (X.1) &pa(y,w)_ 13 0.

aT, aTq

This is the key result of our paper. Equati@tB) gives the

pumped current in terms of the derivative of the adiabatic 0.

solution pg (x,t) and its companiomg (x,t). It is valid for

slowly time-varying periodic potentiaIAV(x,f(t)) of arbi-

trary shape and arbitrary strength. The expressit®) is u=pVp

most useful for the case of small-amplitude perturbations. In FIG. 1. Temperature dependentfi—pV,), of the adiabati
. o 1. =BVo), n

this case the derivatives ph (x,t) can be evaluated at zero cally pumped currentL4) (solid line) and the currentl7) generated

amplitude and the integral over the area enclosed by the pay}y, 5 constant external forde (dashed ling

JdT,dT, is simply a multiplying factor.

[1(u)
I3(u)

. EXAMPLE WITH GLOBAL DRIVING fpumd U=BVo) =u (16)

We now specialize to the small-amplitude regime. To do
so, we can seT;=T,=0 in the integrand of Eq(13). For  This function has been plotted in Fig. (5olid line). We
the particular potentiah V(x, T(t)) introduced in Eq(4) the ~ observe thaf,,,{u) vanishes both in the limit of low and
area enclosed by the pumping path ishigh temperature and that it reaches a maximumuat
[AdTdT,VaVesingsiny and a calculation leads to the =1.4%....This behavior can be understood as follows. At

pumped current very low temperaturélarge u), thermal activation is negli-
gible. Since the perturbatiamv(x,'r'(t)) is furthermore very
1,(8Vo) small, the particle remains trapped in the minima of the bare
(Iy= >BVo3 wVaVpSing siny, (149 potential Vy(x) and there is no transport. For the small-
27Vy  15(BVo amplitude perturbations considered here this clearly demon-

strates that there is no classical pumping without thermal
wherel o(x) andl,(x) are the hyperbolic Bessel functions of noise. In the opposite limit of high temperatuigmall u),
order zero and one, respectively. Equatid#d) exhibits the thermal fluctuations dominate and we have sin(gienmet-
main features of adiabatic pumping. We see that the adiabatiic) Brownian diffusion with zero average displacement. The
cally pumped currenl) is linear in the pumping frequency maximum pumped current corresponds to a thermal energy
w and the amplitude¥, andVy of the two external poten- of the order of the potential energy.
tials. The current is proportional to the sines of the temporal It is further instructive to compare the adiabatic pumped
and spatial phase differences. An important consequence etirrent (14) with the current created by a small constant
Eqg. (14) is that the current vanishes if either or y is a  (time-and-space independgmxternal forceF. In this case
multiple of 7r. This shows that alouble phase difference, the overdamped Brownian particle experiences the potential
both in time and in space is necessary in order to rectify th&/(x)=Vy(x) —Fx. A similar calculation of the current, up to
noise. More generally, it can be shown that if the perturbafirst order inF, yields the following expressiofsee also Ref.
tion is written as producA V(x, T(t))=X(x) T(t) with X(x)  [30]):
periodic in space and (t) periodic in time, there is no
pumped current for any amplitude. An interesting situation, uF
which offers a simple physical interpretation, is the one for (= WEV)'
which the current is maximum. This happens whegny= 0 0
+ /2. By taking|Va|=|Vg|, the perturbation can be rewrit-
ten in the form

(17)

The temperature dependence of this force-induced current,

given by f(U)=142(u), is shown in Fig. A(dashed ling

R Here, in contrast to adiabatic pumping, the current is maxi-
AV(x,T(t))=Vcog2mx/a=* wt), (15 mum at very high temperature. This is due to the presence of

a small but finite slope in the potential. In the low-

the sign being determined by the relation betwgeand y  temperature limit both currents are suppressed. We notice,

and betweerV, and Vg. The maximum current is hence however, that for the force-induced currerf,.J(u)

generated by a traveling wave potential. It is to be expected-ue™2Y, the decay with temperature is asymptoticdigter

that a traveling wave potential is a particularly efficient waythan for the pumped currerﬂgum,{u)~u2e*2“. As a conse-

of generating a currern8,29. quence, there is a critical temperatysg below which the
Let us now examine the temperature dependence of theumped current is larger than the current generated.ldn
particle current. It is given by the function this regime, adiabatic pumping is a more efficient transport
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FIG. 2. h(1x,,X,) describes the variation of the pumped cur- -1
rent with respect to the positiong andx, of the & perturbations.
There is no pumped current fag = X,.

— 2
mechanism than applying an external force. The value of the ]
critical temperaturgs, depends on both the area enclosed by ]
the pumping path, the frequency, aRd

IV. EXAMPLE WITH LOCALIZED DRIVING h 1
In the example discussed above the perturbation potential 1
is extended through the entire spatial period of the system.Is o . 5 -
this a necessary condition, or is a spatially localized pertur- ]
bation sufficient to generate a pumping current? To answer
this question we consider a perturbation given by Gg.As 07 - =
for the previous example, we can compute the current from
Eq. (13) to obtain
0.5
wVAVBSin(p ( EVO )2
[V=— h(B8Vy,X1,X2), (18
W= gz |io(pve)) NAYVoxe L
where  h(BVq,X1,X2) =f(BVo,X1,X2) + (= BVo,X1,X2), FIG. 3. Variation of the pumped current of the localized para-

and
f(BVg,X1,Xp) = el2BVpsin(xy +xp)sin(x; —X5)]

Xo—

x| 6%y —Xg) + f "dxps ()| (19

X1

bation.

with Bg(x)=pa(x,T1=0,T2=O). 0 is the Heaviside step

metric pumping model. Shown is the functibrfor (a) x,=0, (b)
Xo,= /2, and(c) X,=27—X;.

course this discontinuity disappears if instead & fanction
slightly broadened functions are used to describe the pertur-

The reason that the localized perturbation leads to a

function. If we exchange; andx,, we change the sign of pumped current is due to the normalization of the distribu-
the current, since it corresponds to a change of the sign of thiéon function. As a consequence even a localized perturbation
temporal phase difference. The temperature dependence generates a nonlocal response.

similar to the one encountered previousiye., the current
vanishes for both zero and infinifgv,). The interesting de-
pendence of the current ox; and x, is determined by
h(BVo=1Xx1,X5), which is plotted in Fig. 2. No current is
generated ifx;=x,. The pumped currenfthe function
h(BVy,X1,X5)] is discontinuous along the ling;=x,. Of

021111-4

Figure 2 gives an overview of the pumping currents that
can be achieved with the two localized perturbations. To gain
further insight it is useful to consider several cuts through
Fig. 2.

In Fig. 3(a@), we keep the position of one perturbation at a
fixed locationx,= 0 (at the potential minimupnand consider
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the pumping current as a function of the positionof the  considering Eq(9). The solution of this equation determines
other perturbation. The pumped current is then maximgj if the correctionv of the density to the adiabatic solution: This

is at the inflection point of the potentiak{= 7/2). There is  correction is proportional tg.~*. Since the current operator
no current if the perturbation is located at the maximum ofis proportional tou the resulting net current is independent
the potential. Ax; increases further, the current direction is of 1. We emphasize that the pumped current is independent
reversed. Ax, passes through zero, the current jumps fromof x not only for the particular models considered here but
a negative value to a positive value. Note that in this case thguite generally for all adiabatic perturbations.

pumped current is antisymmetric arourg= 7 since one In summary, we have shown that a directed current can be
perturbation is located at a symmetry point€0) of the  generated in a symmetric periodic potential by adiabatically
potential. modulating two small external potential parameters. We have

In Fig. 3(b), we keep one perturbation at the inflection investigated a model with glob#&patially periodi¢ pertur-
point of the potentialx,= /2. As a function ofx,; the bations and a model with localized perturbations. For the
pumped current jumps at = /2. The current decreases as model with global perturbations we find that a double—
X1 increases past,= /2, goes through a local minimum, temporal and spatial—phase difference is necessary to gen-
and reaches a local maximum foy just beforex;=. The  erate a current. The maximum pumped current is obtained
maximal pumped current is achievedxf is a little to the  for a temperatur&T of the order of the potential height,
right of the local potential minimum. Note that in this case and for a perturbative potential corresponding to a traveling
we have no symmetry around/2 and neither are the two wave (p,x= = 7/2). Similarly for the model with localized
directions of current equivalent. perturbations we find a pumped current unless the two per-

In Fig. 3(c), we consider the case where the two pertur-turbations are located at the same position or have a spatial
bations are symmetrically located around the potential maxidifference of#. Pumping arises through the subtle interplay
mum 7. The current then jumps at;=Xx,= and is anti- between thermal fluctuations and cyclic variations of the po-
symmetric as a function of; around this point. tential. It therefore disappears in the limit of low and high

For global driving we found that the current is a sinu- temperature when either the potential or the thermal energy
soidal function of the spatial phase difference between théecomes predominant. We have demonstrated the existence
two perturbations. In contrast, in the local driving modelof a potential-dependent critical temperature below which
considered here the pumped current depends not only in adiabatic pumping is more efficient than applying a small
simple manner on the spatial distance between the two peconstant external force. The work presented here can be ex-
turbations but also on their absolute locations in the intervaltended in different directions: Systems with open boundary
This leads to the much more complicated behavior depictedonditions, several space dimensions, and inertial effects are
in Figs. 2 and ). possible subjects for further research.

V. DISCUSSION
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