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Noise-assisted classical adiabatic pumping in a symmetric periodic potential
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We consider a classical overdamped Brownian particle moving in asymmetricperiodic potential. We show
that a net particle flow can be produced by adiabatically changing two external periodic potentials with a phase
differencew in time andx in space. The classical pumped current is found to be independent of the friction and
to vanish both in the limit of low and high temperature. Below a critical temperature, adiabatic pumping
appears to be more efficient than transport due to a constant external force.

DOI: 10.1103/PhysRevE.66.021111 PACS number~s!: 05.40.Jc, 05.60.2k
a
on
re
th
d
rfe
ee
e
t

on
t

d

ac
re
e

tr
th

on
a
p

um
ga
on
n

pe
d
W

al
o
n
pe
l

e
nt
it,

s in

en-
etric

not

te-
t out
o a
d
is
ib-
ys-
n

nt
s in

fs.
the
,
he

the
by

ll-
is-

ex-
by

ity

d
.

I. INTRODUCTION

Recently there has been considerable interest in sm
amplitude adiabatic pumping in mesoscopic electrical c
ductors @1#. Two oscillating out-of-phase perturbations a
applied, which lead to small distortions of the shape of
system. As a consequence a directed current is generate@2#.
The pumped current is a consequence of quantum inte
ence effects. An elegant formulation of the problem has b
achieved by Brouwer@3# based on the modulation of th
emissivities of the system@4#. Inelastic scattering does no
suppress the pumped current but introduces an additi
more classical contribution to the pumped current due
rectification@5,6#. For a broader view of this very active fiel
we refer to a few recent works@7–11#.

Adiabatic pumping is of general interest due to the f
that only very slow perturbations are required: furthermo
if the amplitudes are small the system remains at all tim
close to the stationary equilibrium state. Thus parame
adiabatic pumping can be viewed as a tool to investigate
near equilibrium properties of a system. Since perturbati
can be applied locally, such an investigation gives inform
tion on the system that cannot be obtained through the ap
cation of global and stationary forces.

It is the purpose of this work to complement the quant
mechanical discussions mentioned above and to investi
parametric pumping for a purely classical system. We c
sider particles subject to damping and thermal noise i
symmetric periodic potentialV0(x)5V0(2x). In addition to
the static potential V0(x) two small-amplitude time-
dependent oscillatory potentials act on the particles. The
turbations we consider are periodic in time and are perio
in space with the same period as the static potential.
investigate the case where the perturbations have adouble
phase difference both intime andspace. As in the quantum
case, a directed current is generated, which is proportion
the frequency of the oscillating perturbations and prop
tional to the product of their amplitudes. A directed curre
results for almost all types of perturbations, unless these
turbations have a special symmetry~phase differences equa
to a multiple of p). Interestingly, for the small-amplitud
perturbations considered here, the thermal noise is esse
the pumped current vanishes in the zero-temperature lim
1063-651X/2002/66~2!/021111~6!/$20.00 66 0211
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maximal at some intermediate temperature, and vanishe
the high-temperature limit.

A symmetry breaking of the system is necessary to g
erate a directed current. In the noise-assisted param
pumping process discussed here the symmetry is broken
with the help of the static potentialV0(x) but through the
perturbations applied to the system. Nonequilibrium sta
dependent noise with the same period as the potential bu
of phase with a symmetric static potential also leads t
directed current@12–16#. Thus this is an example of directe
motion in a symmetric potential for which the symmetry
broken not by the static potential but only by the nonequil
rium noise. Similarly directed motion can be obtained in s
tems with a spatially symmetric potential but with a frictio
constant that is state dependent@17,18#. We emphasize the
symmetry of the static problem, since typically, the rece
literature has emphasized directed transport in system
which already the static potential@19–21# is asymmetric
V0(x)ÞV0(2x). The examples discussed here and in Re
@12–16# demonstrate that static symmetric breaking, i.e.,
consideration of aratchetpotential@22–26# is not necessary
if either nonequilibrium noise or perturbations applied to t
system act in a symmetry breaking way.

Quasiadiabatic perturbations of particles subject to
Smoluchowski equation have recently been investigated
Parrondo @27#. Below we present a discussion of sma
amplitude parametric pumping that closely follows the d
cussion by Parrondo@27#.

II. PARAMETRIC PUMPING

The overdamped motion of a classical particle in an
ternal potential and subjected to thermal noise is governed
the Smoluchowski equation for the probability dens
r(x,t),

]

]t
r~x,t !5m

]

]x
F ]V„x,TW ~ t !…

]x
1

1

b

]

]x
Gr~x,t !

52
]

]x
J~x,t !r~x,t !, ~1!

where m is the mobility, b the inverse temperature, an
J(x,t)52mV8„x,TW (t)…2mkT]/]x is the current operator
©2002 The American Physical Society11-1
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Here the prime denotes derivative with respect tox. We con-
sider a total potentialV„x,TW (t)… that is written as a sum of a
symmetric periodic potential

V0~x!5V0@12cos~2px/a!# ~2!

with perioda, plus a perturbation

DV„x,TW ~ t !…5X1~x!T1~ t !1X2~x!T2~ t !. ~3!

Here X1(x) and X2(x) are arbitrary spatial functions with
perioda and similarlyT1(t) andT2(t) are arbitrary functions
of time with period 2p/v. We consider two special ex
amples with purely harmonic driving. In both examples t
time-dependent external perturbation is composed of
sinusoidal potentials with amplitudeVA andVB . In the first
example, the spatial functions act over the entire period,

DV„x,TW ~ t !…52VAcos~2px/a!cos~vt !

2VBcos~2px/a1x!cos~vt1w! ~4!

with a phase differencex in space and a phase differencew
in time. In the second example, driving is spatially localiz
at two arbitrary pointsx1 andx2 in the interval@0,a#,

DV„x,TW ~ t !…52VAcos~vt !d~x122px/a!

2VBcos~vt1w!d~x222px/a!, ~5!

whered is the Diracd function. In the following we assume
that DV„x,TW (t)… changes slowly in time and that its amp
tude is small compared to the unperturbed potentialVA ,VB
!V0.

The quantity of prime interest is the mean particle curre
averaged over one period of space and one period of tim

^I &5
v

2paE0

a

dxE
0

2p/v

dtJ~x,t !r~x,t !

52
mv

2paE0

a

dxE
0

2p/v

dtV8„x,TW ~ t !…r~x,t !. ~6!

Due to the periodicity of the potential in time and space,
second term ofJ(x,t) does not contribute to the current. W
begin by solving the Smoluchowski equation~1! in the limit
of small driving frequenciesv→0. In this limit, the system
remains close to the adiabatic solutionr0

2(x,t), which is
obtained by setting in Eq.~1! ]r/]t50. The latter is given
by an equilibrium Boltzmann distribution

r0
6~x,t !5Z6

21~ t !e2bV„x,TW (t)…,

Z6~ t !5E
0

a

dxe6bV„x,TW (t)…, ~7!

and therefore does not yield any current.@Here we have in
addition to the adiabatic solutionr0

2(x,t) introduced
r0

1(x,t) for later reference.# Since the adiabatic solution i
not associated with a current flow, we need to find the c
02111
o

t,
,

e

r-

rection to this solution to determine the current. We exp
that the correction to the adiabatic solution is of the order
the variation rate of the perturbation@27#, which, for the
potentialDV„x,TW (t)… we consider here, is given byv. We
thus seek a solution of the Smoluchowski equation of
form

r~x,t !.r0
2~x,t !1TẆ ~ t !nW „x,TW ~ t !…. ~8!

The correctionTẆ (t)nW „x,TW (t)…, of order v, to the adiabatic
solutionr0

2(x,t) gives rise to the nonvanishing particle cu
rent. Inserting the ansatz~8! into the Smoluchowski equation
~1! and neglecting the time derivative of the correctio
which is of the orderv2, we arrive at

m
]

]x
F ]V„x,TW ~ t !…

]x
1

1

b

]

]x
GnW „x,TW ~ t !…5¹WTW (t)r0

2~x,t !. ~9!

This second-order partial differential equation fornW „x,TW (t)…
has to be solved with periodic boundary conditio
nW „0,TW (t)…5nW „a,TW (t)…, and the condition that the integral o
nW „x,TW (t)… along the interval@0,a# vanishes. This second
condition follows from the normalization ofr(x,t) over one
~spatial! period. We find

nW „x,TW ~ t !…5CW 1e2bV„x,TW (t)…E
0

x

dyebV„y,TW (t)…

1
b

m
e2bV„x,TW (t)…E

0

x

dyebV„y,TW (t)…

3E
0

y

dz“W TW (t)r0
2~z,t !1CW 2e2bV„x,TW (t)…,

~10!

whereCW 1(t) and CW 2(t) are two vectors of integration con
stants. Explicitly,CW 1(t) is given by

CW 1~ t !52
b

mE0

a

dxr0
1~x,t !E

0

x

dy“W TW (t)r0
2~y,t !, ~11!

wherer0
6(x,t) is given by Eq.~7!. The solution~8! of the

Smoluchowski equation is then obtained by combining E
~7! and~10!. Using the above solution, the mean current~6!
can be easily calculated as

^I &52
mv

2pbE0

2p/v

dtTẆ ~ t !CW 1~ t !

5
v

2pETW (0)

TW (2p/v)
dTW E

0

a

dxr0
1~x,t !E

0

x

dy“W TW (t)r0
2~y,t !.

~12!

We now take the case DV„x,TW (t)…5T1(t)X1(x)
1T2(t)X2(x). With “

W
TW (t)5]/]T11]/]T2 and Green’s theo-

rem, Eq.~12! can be rewritten as
1-2
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^I &5
v

2pEA
dT1dT2E

0

a

dxE
0

x

dyS ]r0
1~x,t !

]T1

]r0
2~y,t !

]T2

2
]r0

1~x,t !

]T2

]r0
2~y,t !

]T1
D . ~13!

This is the key result of our paper. Equation~13! gives the
pumped current in terms of the derivative of the adiaba
solution r0

2(x,t) and its companionr0
1(x,t). It is valid for

slowly time-varying periodic potentialsDV„x,TW (t)… of arbi-
trary shape and arbitrary strength. The expression~13! is
most useful for the case of small-amplitude perturbations
this case the derivatives ofr0

6(x,t) can be evaluated at zer
amplitude and the integral over the area enclosed by the
*dT1dT2 is simply a multiplying factor.

III. EXAMPLE WITH GLOBAL DRIVING

We now specialize to the small-amplitude regime. To
so, we can setT15T250 in the integrand of Eq.~13!. For
the particular potentialDV„x,TW (t)… introduced in Eq.~4! the
area enclosed by the pumping path
*AdT1dT2VAVBsinw sinx and a calculation leads to th
pumped current

^I &5
1

2pV0
2
bV0

I 1~bV0!

I 0
3~bV0!

vVAVBsinw sinx, ~14!

whereI 0(x) andI 1(x) are the hyperbolic Bessel functions
order zero and one, respectively. Equation~14! exhibits the
main features of adiabatic pumping. We see that the adiab
cally pumped current̂I & is linear in the pumping frequenc
v and the amplitudesVA andVB of the two external poten
tials. The current is proportional to the sines of the tempo
and spatial phase differences. An important consequenc
Eq. ~14! is that the current vanishes if eitherw or x is a
multiple of p. This shows that adouble phase difference
both in time and in space is necessary in order to rectify
noise. More generally, it can be shown that if the pertur
tion is written as productDV„x,TW (t)…5X(x)T(t) with X(x)
periodic in space andT(t) periodic in time, there is no
pumped current for any amplitude. An interesting situati
which offers a simple physical interpretation, is the one
which the current is maximum. This happens whenw,x5
6p/2. By takinguVAu5uVBu, the perturbation can be rewrit
ten in the form

DV„x,TW ~ t !…5VAcos~2px/a6vt !, ~15!

the sign being determined by the relation betweenw andx
and betweenVA and VB . The maximum current is henc
generated by a traveling wave potential. It is to be expec
that a traveling wave potential is a particularly efficient w
of generating a current@28,29#.

Let us now examine the temperature dependence of
particle current. It is given by the function
02111
c
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f pump~u5bV0!5u
I 1~u!

I 0
3~u!

. ~16!

This function has been plotted in Fig. 1~solid line!. We
observe thatf pump(u) vanishes both in the limit of low and
high temperature and that it reaches a maximum au
.1.426 . . . .This behavior can be understood as follows.
very low temperature~large u), thermal activation is negli-
gible. Since the perturbationDV„x,TW (t)… is furthermore very
small, the particle remains trapped in the minima of the b
potential V0(x) and there is no transport. For the sma
amplitude perturbations considered here this clearly dem
strates that there is no classical pumping without therm
noise. In the opposite limit of high temperature~small u),
thermal fluctuations dominate and we have simple~symmet-
ric! Brownian diffusion with zero average displacement. T
maximum pumped current corresponds to a thermal ene
of the order of the potential energy.

It is further instructive to compare the adiabatic pump
current ~14! with the current created by a small consta
~time-and-space independent! external forceF. In this case
the overdamped Brownian particle experiences the poten
V(x)5V0(x)2Fx. A similar calculation of the current, up to
first order inF, yields the following expression~see also Ref.
@30#!:

^I &5
mF

aI0
2~bV0!

. ~17!

The temperature dependence of this force-induced curr
given by f force(u)5I 0

22(u), is shown in Fig. 1~dashed line!.
Here, in contrast to adiabatic pumping, the current is ma
mum at very high temperature. This is due to the presenc
a small but finite slope in the potential. In the low
temperature limit both currents are suppressed. We no
however, that for the force-induced currentf force(u)
;ue22u, the decay with temperature is asymptoticallyfaster
than for the pumped currentf pump(u);u2e22u. As a conse-
quence, there is a critical temperaturebc below which the
pumped current is larger than the current generated byF. In
this regime, adiabatic pumping is a more efficient transp

FIG. 1. Temperature dependencef (u5bV0), of the adiabati-
cally pumped current~14! ~solid line! and the current~17! generated
by a constant external forceF ~dashed line!.
1-3
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mechanism than applying an external force. The value of
critical temperaturebc depends on both the area enclosed
the pumping path, the frequency, andF.

IV. EXAMPLE WITH LOCALIZED DRIVING

In the example discussed above the perturbation pote
is extended through the entire spatial period of the system
this a necessary condition, or is a spatially localized per
bation sufficient to generate a pumping current? To ans
this question we consider a perturbation given by Eq.~5!. As
for the previous example, we can compute the current fr
Eq. ~13! to obtain

^I &52
vVAVBsinw

8p3V0
2 S bV0

I 0~bV0! D
2

h~bV0 ,x1 ,x2!, ~18!

where h(bV0 ,x1 ,x2)5 f (bV0 ,x1 ,x2)1 f (2bV0 ,x1 ,x2),
and

f ~bV0 ,x1 ,x2!5e[2bV0sin(x11x2)sin(x12x2)]

3Fu~x12x2!1E
x1

x22p

dxr̃0
2~x!G ~19!

with r̃0
2(x)5r0

2(x,T150,T250). u is the Heaviside step
function. If we exchangex1 and x2, we change the sign o
the current, since it corresponds to a change of the sign o
temporal phase difference. The temperature dependen
similar to the one encountered previously~i.e., the current
vanishes for both zero and infinitebV0). The interesting de-
pendence of the current onx1 and x2 is determined by
h(bV051,x1 ,x2), which is plotted in Fig. 2. No current is
generated if x15x2. The pumped current@the function
h(bV0 ,x1 ,x2)# is discontinuous along the linex15x2. Of

FIG. 2. h(1,x1 ,x2) describes the variation of the pumped cu
rent with respect to the positionsx1 andx2 of the d perturbations.
There is no pumped current forx15x2.
02111
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course this discontinuity disappears if instead of ad function
slightly broadened functions are used to describe the pe
bation.

The reason that the localized perturbation leads to
pumped current is due to the normalization of the distrib
tion function. As a consequence even a localized perturba
generates a nonlocal response.

Figure 2 gives an overview of the pumping currents th
can be achieved with the two localized perturbations. To g
further insight it is useful to consider several cuts throu
Fig. 2.

In Fig. 3~a!, we keep the position of one perturbation a
fixed locationx250 ~at the potential minimum! and consider

FIG. 3. Variation of the pumped current of the localized pa
metric pumping model. Shown is the functionh for ~a! x250, ~b!
x25p/2, and~c! x252p2x1.
1-4
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the pumping current as a function of the positionx1 of the
other perturbation. The pumped current is then maximal ifx1
is at the inflection point of the potential (x15p/2). There is
no current if the perturbation is located at the maximum
the potential. Asx1 increases further, the current direction
reversed. Asx1 passes through zero, the current jumps fro
a negative value to a positive value. Note that in this case
pumped current is antisymmetric aroundx15p since one
perturbation is located at a symmetry point (x250) of the
potential.

In Fig. 3~b!, we keep one perturbation at the inflectio
point of the potentialx25p/2. As a function ofx1 the
pumped current jumps atx15p/2. The current decreases a
x1 increases pastx25p/2, goes through a local minimum
and reaches a local maximum forx1 just beforex15p. The
maximal pumped current is achieved ifx1 is a little to the
right of the local potential minimum. Note that in this ca
we have no symmetry aroundp/2 and neither are the two
directions of current equivalent.

In Fig. 3~c!, we consider the case where the two pert
bations are symmetrically located around the potential m
mum p. The current then jumps atx15x25p and is anti-
symmetric as a function ofx1 around this point.

For global driving we found that the current is a sin
soidal function of the spatial phase difference between
two perturbations. In contrast, in the local driving mod
considered here the pumped current depends not only
simple manner on the spatial distance between the two
turbations but also on their absolute locations in the inter
This leads to the much more complicated behavior depic
in Figs. 2 and 3~b!.

V. DISCUSSION

We first point to the remarkable fact that the pumped c
rent is independent of the mobilitym. This should be con-
trasted with the linear dependence onm of a current gener-
ated with the help of a constant force. That the pump
current is indeed independent ofm can easily be seen b
rd

.

B

02111
f

e

-
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e
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a
r-
l.
d

r-

d

considering Eq.~9!. The solution of this equation determine
the correctionn of the density to the adiabatic solution: Th
correction is proportional tom21. Since the current operato
is proportional tom the resulting net current is independe
of m. We emphasize that the pumped current is independ
of m not only for the particular models considered here b
quite generally for all adiabatic perturbations.

In summary, we have shown that a directed current can
generated in a symmetric periodic potential by adiabatica
modulating two small external potential parameters. We h
investigated a model with global~spatially periodic! pertur-
bations and a model with localized perturbations. For
model with global perturbations we find that a double
temporal and spatial—phase difference is necessary to
erate a current. The maximum pumped current is obtai
for a temperaturekT of the order of the potential heightV0
and for a perturbative potential corresponding to a travel
wave (w,x56p/2). Similarly for the model with localized
perturbations we find a pumped current unless the two p
turbations are located at the same position or have a sp
difference ofp. Pumping arises through the subtle interpl
between thermal fluctuations and cyclic variations of the
tential. It therefore disappears in the limit of low and hig
temperature when either the potential or the thermal ene
becomes predominant. We have demonstrated the exist
of a potential-dependent critical temperature below wh
adiabatic pumping is more efficient than applying a sm
constant external force. The work presented here can be
tended in different directions: Systems with open bound
conditions, several space dimensions, and inertial effects
possible subjects for further research.
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